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We analyze the kinetic theory for dense gases proposed by Bogolyubov. 
We arrive at the conclusion that the boundary conditions proposed by him 
are not adequate for the description of a dense gas. This fact is the reason 
for the occurrence of the divergences found in the virial expansion of the 
generalized Boltzmann equation and of the transport coefficients. We 
propose new boundary conditions which lead to convergent virial expansions 
of the kinetic equation and of the transport coefficients. 

KEY W O R D S :  Convergent kinetic theory; dense gases; boundary conditions; 
divergences in the transport coefficients; convergent virial expansion; two- 
body distribution function. 

I .  I N T R O D U C T I O N  

In  1946 Bogolyubov ~1) presented his theory of nonequ i l ib r ium statistical 
mechanics for dense gases. In  the development  of this theory three essential 
assumptions are made:  (i) the funct ional  hypothesis, (ii) the existence of a 
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density expansion of the relevant quantities, and (iii) certain boundary con- 
ditions in order to solve the BBGKY hierarchy. 

Since then much work has been invested in obtaining all its possible 
consequences. ~2~ In particular, attention was centered on the explicit deriva- 
tion of a virial expansion of the kinetic equation that describes the evolution 
of the system, and of the corresponding transport coefficients. In this way 
an attempt was made to generalize the Boltzmann equation to higher orders 
in the density. However, when calculations were made to obtain the second 
order in the density of the transport coefficients, it was found that the resulting 
expressions diverged. ~ This means that the configuration integrals involved 
diverge. For higher orders in the density, the same sort of divergences were 
obtained. Thereafter the idea of a virial expansion of the transport coefficients 
was severely questioned. In order to remedy this situation, several methods 
have been proposed. We only mention the resummation technique followed 
by Dorfman e t  al.  ~4~ 

On the other hand, methods have been developed for calculating linear 
transport coefficients without any reference to a density expansion/5~ 
However, these developments are formal, in the sense that they still depend 
on the two-body distribution, which so far is not available without a density 
expansion. 

It should be mentioned that there have also been workers who have 
implied that no functional description in terms of the single-particle distribu- 
tion function is possible. This means that no kinetic equation for the system 
exists. 

However, the use of the hypotheses concerning the nonexistence of the 
virial expansion and/or the functionality has not led to satisfactory results. 

The third hypothesis used by Bogolyubov, the one concerning the 
boundary conditions, has, to our knowledge, not been analyzed earlier by 
other authors. ~6~ 

It is the purpose of this paper to analyze the boundary conditions 
introduced by Bogolyubov. We will show that these boundary conditions 
are not adequate for the description of a dense gas. The appearance of the 
divergences is shown to be a consequence of not taking the medium into 
account in the boundary conditions. We will propose new boundary condi- 
tions that do take into account the medium explicitly, and which lead to 
convergent virial expansions of the kinetic equation and of the transport 
coefficients. 

The appearance of the above-mentioned divergences has already been 
doubted by several authors. (7~ We only mention the work of Fujita ~8~ using 
diagrammatic methods and of Byung Chart Eu C9~ starting from the method 
~f correlation functions. 

In this paper we obtain the first terms in the density expansion of the 
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two-body distribution function. In forthcoming papers we will present the 
calculations of the different terms in the density expansion of the transport 
coefficients. 

In Section 2 we solve formally the BBGKY hierarchy using only two 
assumptions: (i) the functional hypothesis and (ii) the existence of a density 
expansion. In Section 3 we discuss Bogolyubov's boundary conditions and 
show that they are not adequate. We then proceed to propose new boundary 
conditions. In Section 4 we use the new boundary conditions in order to 
obtain explicitly the two-body distribution function as functional of the single 
distribution function, to different orders in the density. Finally in Section 5 
we sum up the results, and conclude that there exists a density expansion 
of the kinetic equation and of the transport coefficients to any order in the 
density. 

2. F O R M A L  S O L U T I O N  O F  T H E  B B G K Y  H I E R A R C H Y  

Let us consider a one-component gas consisting of N molecules of mass 
m enclosed in a volume V. The Hamiltonian of this system will be taken of 
the form 

N N 

H = Y. (p, ' /Zm) + �89 Y.Y. ~(1 q, - -  % I) (1) 
i= l  i r  

where p~ and q~ are the momentum and position of the ith particle, respective- 
ly. Here q~ is the pair potential, which we restrict to be a strong repulsive 
potential. 

As is well known, the BBGKY hierarchy can be written as follows: 

s = 1, 2 .... (2) 

Here we have already taken the so-called thermodynamic limit, N --~ oo, 
V - +  0% N / V  = n. In this expression Fs(x l  ,..., x~ ; t )  denotes the s-body 
distribution function in phase space, and x~ ~ (p~, qi). The operators 0~- 
and Y#, are given by 

eq~ " ~p~ + ~qj " ep--7 (3) 

and 

zk 
'= i<] 
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As was mentioned in the introduction, we will assume that in the kinetic 
stage of the evolution of the system the s-body distribution function (s >~ 2) 
is a time-independent functional of F 1 , i.e., 

F~(xl .... , x ,  ; t)  --~ Fs(xl  ,..., x ,  IF1) (5) 

where the usual notation is used. Substituting Eq. (5) into the first equation 
of the BBGKY hierarchy (s = 1), one finds the kinetic equation, valid to 
any order in the density, 

aFUat  = A(x~ IF0 (6) 

Let us expand A and F, in powers of the density: 

and 

A ( x l  IF0 = ~ n ' A ( ~  IF1) (7) 

Fs(X1 Xs IF1)  i "ir'(i)(v ..... = . r ~  ~ I , . . . , x ~ I F O  (8) 

Substituting Eq. (7) into Eq. (6), and Eq. (8) for s = 1 into the first 
equation of the hierarchy, and comparing the resulting expressions, one 
finds that 

A (~ [ F1) = - -  (pUre)" (eF1/eqO (9) 

A(~)(xl IF1) = f dx2 0 E ( " ) C x  12 2 k 1 ,  X2 I f 1 ) ,  l >~ 1 (10) 

Proceeding as usual, we write 

8Fs(xl  .... , x~ I F1)18t = [SFs/SF1, ~F1/~t] : [3FJSF1 ,  A(Xl  IF0] (11) 

where (3F~/SF1) denotes the functional derivative of F~ with respect to/71. 
Substituting Eq. (11) into the hierarchy, Eq. (2), we find the following 
differential equations, to the various orders in the density: 

_ff  p(o) D(~ ~ + ~ = 0 

j=l  i=1 

(12) 

--(0. ~ ix1 ,..., x~ IF1), l >~ 1 (13) 
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and 

Here the operators D ok) are defined as 

D(k~P~(xl ..... x~ IF1) = [3PdSF1,  AIJ~)(xl J F1)] (14) 

As is well known, m the solutions of Eqs. (12) and (13) are 

F(O).. = S;r176 ..... J S~r (15) t ~  ..... x~lgo x~ 

gYkx~  ,..., x~ r F l) = s ; ' g Y k x l  ,..., x81 s d g o  

T 

Jl -~ (0 + dr S~ ~b~ (xa ,..., x.~ I Sz'FO, 1 >~ 1 (16) 

The streaming operator S~'(x~ ,..., xs) of s particles is given by 

S / ( x l  .... , xs) = exp[~-~(xl .... , x~)] (17) 

It should be mentioned that these results are obtained by making only 
two assumptions: (i) the functional hypothesis [Eq. (5)], and (ii) the existence 
of a density expansion. 

It is at this point where various authors use the boundary conditions 
advanced by Bogolyubov, in order to obtain explicitly the functional de- 
pendence ofF~ [Eq. (5)]. In the following section we will discuss new boundary 
conditions that take into account the medium in the hydrodynamic stage. 

3. B O U N D A R Y  C O N D I T I O N S  

First of all we will discuss the physical meaning of Bogolyubov's 
boundary conditions (BBC). These are given by 

lim S2"F~(xz ..... x~ I S~'F1) = lira $2 ~ ( I  Sz 'Fl(xi  ; t) 
, r ~  T ~ o o  

i = l  

(18) 

The physical meaning of BBC is that when several particles are out of 
their mutual sphere of influence (the range of the potential) then there are no 
correlations between them. The only correlations allowed for by BBC will 
occur only once, namely when these several particles collide. This is an 
attempt to generalize the Stosszahlansatz introduced by Boltzmann for 
dilute gases. However, the BBC are not correct for the case of a dense gas. 

In fact, let us consider the case of a gas of hard spheres in equilibrium. 
When they are in contact then they are, of course, correlated. As is well 
known, this correlation persists even when the spheres are out of their 
mutual sphere of influence. This correlation is atributed to an effective mean 
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force between the two spheres through the medium in which they are em- 
bedded. This medium consists of the remaining particles of the system. This 
same property will be manifested even if the system is in a nonequilibrium 
state. 

It should be noted that this influence of the medium will be manifested 
in a stronger way as the density increases. For the case of  the dilute gas one 
should recover the Stosszahlansatz hypothesis. 

We now see that the boundary conditions given by Eq. (18) do not 
exhibit this property. This fact, the absence of the medium in the boundary 
conditions given by Bogolyubov, is precisely the reason of the divergences 
that have appeared3 3) The only correlations taken into account in Eq. (18) 
are collisional ones due to direct forces between the particles. 

Now we proceed to propose boundary conditions that take into account 
the influence of the medium. For this purpose, we note that the contribution 
due to the direct forces between the particles can be expressed, to zeroth 
order in the density, as follows{Ira: 

l:m S7"F}~ ..... Xs I SI •F1)  = l:_m m $7  r ~I  Sl"Fl(Xi ; t)  ( 1 9 a )  

and to higher orders in the density as 

�9 - *  (0  
l:m Ss F,  (x,  ..... x ,  l Sz'Fx) = O, l @ 0 (19b) 

If  the medium is taken into account, one should write, to zeroth order 
in the density, instead of Eq. (19a), 

8 
~-,~(o):. g~O)) . l im . . . .  t~z ..... x~ ] S~F1) ----- (1 - -  l im S-J  I~ S~F~(x~, t) (20a) 

i=1  

and to higher orders in the density, instead of Eq. (19b), 

lim ~-" ).,0(_ = 12[ . ~,, , ,  vaz ,..., x ,  I S~'Fx) g~) l im $7" S,'F,(x~ , t), 1 v ~ 0 (20b) 
i=1 

Here g, is the local equilibrium correlation function between s-particles, 
and is expressed as a power series in the density 

g .  = . 'g:" (21) 
Z=O 

We have used the local equilibrium correlation function because we 
want to calculate properties of our system in the hydrodynamic stage. At 
this point we would like to emphasize the fact that boundary conditions in 
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general, and in particular either BBC or our new boundary conditions, are 
hypotheses which are not derivable from the very formalism of the theory. 
In other words, boundary conditions are assumptions which one makes 
about the behavior of the system, and which one introduces in order to solve 
the differential equations describing the general laws that the system obeys. 

Combining Eqs. (20) and (21), one can write the boundary conditions 
compactly as 

8 

lira S~F~(xz ..... Xs I S~Fa) = (1 - -  2g~ ~ + g~) !im S j  ~ l-[ S~F~(xi ; t) (22) 
i=1 

The physical meaning of Eq. (22) is that a set of particles that collide 
once will be allowed to collide many more times because the probability 
that they will be far apart after the collision will be very small. This is a 
consequence of the effect of the medium; the medium does not allow the 
interacting particles to get far apart. In other words, the medium will, on 
the average, confine the interacting set of particles to some region in space. 
The dimensions of this region will, of  course, depend on the potential and 
on the density. 

We can also conclude from the boundary conditions (22) that particles 
that are too far away from each other will have a very small probability 
of colliding, and therefore they are independent. This is again an effect of the 
medium. 

It should be mentioned that BBC only take into account dynamic 
events, whereas our new boundary conditions take also statistical effects 
into account. 

In the next section we will use the new boundary conditions (22) and 
obtain explicitly the functional dependence of the distribution function F~ 
to several orders in the density. 

4. T H E  T W O - B O D Y  D I S T R I B U T I O N  F U N C T I O N  

In this section we will obtain the two-body distribution function to first 
order in the density. The other distribution functions F~ (s > 2) can be 
obtained in an analogous way. 

To zeroth order in the density, we substitute Eq. (20a) into Eq. (15) 
and find 

Fs (~ ]~ iX1 .... , X~ IF1) = /'s(ql .... , q3 ~(X~ ..... Xs) F / x ,  ; t) 
/ = 1  

(23) 

Here we have written 

-Ps(ql ,-.., qs) = 1 -- g(s~ 1 ..... qs) (24) 
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and 

~ ( ~  ,..., ~)  = lira s V ( ~  ,..., ~,) II  s ; ( ~ )  (25) 

For s ----- 2 we obtain from Eq. (23) the zeroth-order term in the two-body 
distribution function as follows: 

2 

F~~ , x2 IF  l) -- F2(q~, q~) -9~ , x~) 1-[ Fl(xi ; t) (26) 
/=1 

Starting from Eq. (16) for s = 2 and with the help of Eq. (20b) one 
finds the first-order term in the density of the two-body distribution function 

2 

Fll)(xl  , xe I FO = g~l)(ql,  qz) 5~2(x1, x2) I-I Fl(x~ ; t) 
i~ l  

+ fo ~ d,  s; ' (x~,  x~) r x~ I SI~FI) (27) 

Proceeding in the usual way, I~l one obtains from Eqs. (13)-(15) 

F~l)(xl , x. IF1) 
2 

= g~l)(qz, q2) 5f2(xl, xz) l-] Fl(Xi ; t) 
i~ l  

f/ f + d, s-;'(x~, x~) dx~{(0~ + 0~) r'~(ql, q~, q~) ~(x~, x~, x~) 

- -  / '~2(ql ,  q2) ~ ( X 1 ,  X2)[023/~2(q2 , q3) "~2(X2, X3) 
3 

@ 01aF2(ql, q~) 5P2(Xl, X~)]} l-[ F~(X~ ; t) (28) 
i=1 

After a lengthy calculation analogous to the one made by Cohen one 
finally finds 3 that 

2 

F(21)(xl, xz iF1) = g~l)(ltl , q2) "SP2(X1 , x2) 1-I F~(xi ; t) 

3 

+ f dx~ O~(xx, x2, xa) ]-I Fl(xi ; t) (29) 

The detailed calculations leading to Eq. (30) are available from the authors upon request. 
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The operator d)a(x~, x2, x3) is given by 

~)3(X1 , X 2 ,  Xs) = R ( X l ,  x 2 ,  x3) - -  S2C~ , x 2 ) [ e 2 ( q l  , q3) ~c~2(Xl , x s )  

and 

+ r2(q~, q~) ~(x~, x3)] 

f; + dT S~'(xl, x2)([k/'2(ql, q~)] 5~2(xl, x2) 

• [F2(q2, q3) -SZ2(x2, x3) + / ' z ( q z ,  qa) 5a2(xl, x3) -- 11 

- -  {[h['3(ql, q~, qa)] ~ ( x 1 ,  X 2 ,  X3) 

-- r2(ql ,  q2) 5a2(xl, x~)[(J~rz(q2, qa)) 5Z2(xz, x3) 

+ (hr,~(ql, q3)) ~ ( x l ,  x3)]}) 
Here 

R~(x~. x~. x.) = r . ( q l ,  q~, q3) ~ ( x ~ ,  x~. x~) 

-- F~(ql, q2) 5Z2(xl, x~)[/-'~(qe, q3) 5P2(x2, x3) 

+ F~(ql, q~) ~ ( x l ,  x~) + _r2(ql, q~) ~ ( x l ,  x~)] 

(30) 

(31) 

3 
h = ~ ~ ( x 3  (32) 

i=1 

We have also explicitly obtained F~ 2). However, since the resulting 
expression is quite long, we will not write it out here. 

5. D I S C U S S I O N  

In this paper we have started from the usual BBGKY hierarchy and 
solved it using new boundary conditions. These boundary conditions, as 
opposed to the ones introduced by Bogolyubov, explicitly take into account 
the medium. 

From inspection of the expressions obtained in Section 4 we now see 
that if we substitute Eqs. (26) and (29) and the expressions for the higher- 
order terms of the two-body distribution function into the first equation of 
the BBGKY hierarchy, the resulting kinetic equation is convergent to any 
order in the density because the terms (1 -- g~0)) and g~) act as convergence 
factors in the configurational integrals. Furthermore, one can also show m) 
that the corresponding transport coefficients converge to all orders in the 
density. It is convenient to remark that the dynamic events which produce 
the divergences in the usual theory are also present in our theory. However, 
in our case they do not contribute because they are weighted by the factors 
/'s and g~t). 
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Therefore, we can conclude the existence of a virial expansion of the 
transport coefficients for a dense gas. 

Recent accurate measurements on the transport coefficients over a wide 
range of densities show that the best fit to the experimental data is a power 
series in the density. <12~ 

At this point we would like to emphasize that the results obtained in this 
paper are valid only in the hydrodynamic regime, and we do not pretend to 
describe the evolution of the system from certain initial conditions. As a 
matter of fact, the new boundary conditions proposed were presented in order 
to solve the differential equations satisfied by Fs and to obtain the transport 
coefficients of the system. 

It is worth mentioning that it is conceivable to use other mathematical 
expressions for boundary conditions which reflect the same physical effects 
of the medium as discussed in the paragraphs after Eq. (22). All these different 
ways of expressing the boundary conditions will give rise the same values of 
the transport coefficients. 

The particular choice of our new boundary conditions arose from the 
need to also include in them statistical effects of the medium, which are 
described by the correlation function, at least in the hydrodynamic regime. 
Therefore this function must appear explicitly in the boundary conditions. 
The simplest way of introducing it is given by Eqs. (20). Of course, the 
justification of this choice, as of any other choice, has to be made a posteriori. 

That is, when the numerical results obtained from the theory are tested 
against real experimental results. In this sense, the usual Bogolyubov theory 
has failed. Of course, we do not consider as real experimental data the 
molecular dynamics results. 

In forthcoming papers (11) we will present the explicit calculations of the 
virial expansion of the transport coefficients. 

A C K N O W L E D G M E N T S  

The authors would like to thank Dr. L. Garcia-Colin for many enlighten- 
ing discussions. They are also grateful to Prof. G. E. Uhlenbeck for a most 
fruitful discussion and encouragement. 

R E F E R E N C E S  

1. N. N. Bogolyubov, Problems of a dynamical theory in statistical mechanics, Translated 
by E. K. Gora, in Studies in Statistical Mechanics, Vol. 1, ed. by J. de Boer and G. E. 
Uhlenbeck, North-Holland, Amsterdam (1962). 



Nonequilibrium Statistical Mechanical Theory for Dense Gases. I 165 

2. S. T. Choh, The kinetic theory of phenomena in dense gases, Doctoral Dissertation, 
University of Michigan, (1958); M. S. Green, Physica 24:393 (1958); E. G. D. Cohen, 
Physica 28:1025, 1045, 1060 (1962), J. Math. Phys. 4:183 (1963); M. S. Green and 
R. A. Piccirelli, Phys. Rev. 132:1388 (1963); K. Kawasaki and I. Oppenheim, Phys. 
Rev. 136A:1519 (1964); E. G. D. Cohen, in Lectures in Theoretical Physics, Vol. IXC, 
ed. by W. E. Brittin, Gordon and Breach, New York (1967); L. S. Garcia-Colln and 
A. Flores, J. Math. Phys. 7:254 (1966). 

3. J. Weistock, Phys. Rev. 140A:460 (1965); E. A. Frieman and R. Goldman, Bull. Am. 
Phys. Soc. 10:531 (1965); K. Kawasaki and I. Oppenheim, Phys. Letters 11:124 (1964); 
B. K. Kawasaki and I. Oppenheim, Phys. Rev. 139A:1763 (1965); J. R. Dorfman and 
E. G. D. Cohen, Phys. Letters 16:124 (1965), J. Math. Phys. 8:282 (1967); M. H. Ernst, 
L. K. Haines, and J. R. Dorfman, Rev. Mod. Phys. 41:296 (1969). 

4. J. R. Dorfman, in Lectures in Theoretical Physics, Vol. IXC, ed. by W. E. Brittin, 
Gordon and Breach, New York (1967). 

5. L. S. Garcia-Colin, M. S. Green, and F. Chaos, Physica 32:450 (1966). 
6. A. Flores and E. Braun, Phys. Letters 38A:365 (1972). 
7. L. S. Garcia-Colin, Kinetic theory of dense gases, in Selected Topics in Solid State and 

Theoretical Physics, ed. by M. Bemporad, Gordon and Breach, New York (1968). 
8. S. Fujita, Proc. Nat. Acad. Sci. (U.S.) 56:16, 794 (1966); S. Fujita, J. Phys. Soc. 

Japan 27:1096 (1969); D. Lee, S. Fujita, and F. Wu, Phys. Rev. A2:854 (1970). 
9. Byung Chart Eu, J. Chem. Phys. 55:4613 (1971). 

10. E. G. D. Cohen, in Fundamental Problems in Statistical Mechanics, ed. by E. G. D. 
Cohen, North-Holland, Amsterdam (1962). 

11. A. Flores and E. Braun, J. Stat. Phys. 8:167 (1973). 
12. J. V. Sengers, private communication; J. Kestin, E. Paykoc, and J. V. Sengers, 

Physica 54:1 (1971). 


